Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconductivity in lithium below 0.4 millikelvin at ambient pressure

Abstract

Elements in the alkali metal series are regarded as unlikely superconductors because of their monovalent character1,2. A superconducting transition temperature as high as 20 K, recently found in compressed lithium3,4,5,6 (the lightest alkali element), probably arises from pressure-induced changes in the conduction-electron band structure6,7,8,9,10,11,12. Superconductivity at ambient pressure in lithium has hitherto remained unresolved, both theoretically and experimentally11,12,13,14,15,16. Here we demonstrate that lithium is a superconductor at ambient pressure with a transition temperature of 0.4 mK. As lithium has a particularly simple conduction electron system, it represents an important case for any attempts to classify superconductors and transition temperatures, especially to determine if any non-magnetic configuration can exclude superconductivity down to zero temperature. Furthermore, the combination of extremely weak superconductivity and relatively strong nuclear magnetism in lithium would clearly lead to mutual competition between these two ordering phenomena under suitably prepared conditions17,18.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of a lithium sample pair, magnetic shields and the measuring coil system.
Figure 2: Observation of the Meissner state, indicating superconductivity in lithium.
Figure 3: Phase diagram for another pair of lithium samples.

Similar content being viewed by others

References

  1. Matthias, B. T. Superconductivity in the periodic system. Prog. Low Temp. Phys. 2, 138–150 (1957)

    Article  CAS  Google Scholar 

  2. Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: A review. Supercond. Sci. Technol. 18, R1–R8 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Struzhkin, V. V., Eremets, M. I., Gan, W., Mao, H. K. & Hemley, R. J. Superconductivity in dense lithium. Science 298, 1213–1215 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003)

    Article  ADS  Google Scholar 

  6. Schilling, J. S. Superconductivity in the alkali metals. High Press. Res. 26, 145–163 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174–178 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Ackland, G. J. & Macleod, I. R. Origin of the complex crystal structures of elements at intermediate pressure. N. J. Phys. 6, 138 (2004)

    Article  Google Scholar 

  10. Rodriguez-Prieto, A., Bergara, A., Silkin, V. M. & Echenique, P. M. Complexity and Fermi surface deformation in compressed lithium. Phys. Rev. B 74, 172104 (2006)

    Article  ADS  Google Scholar 

  11. Jansen, L. On the occurrence of superconductivity in compressed alkali metals. An indirect-exchange interpretation. Physica A 332, 249–262 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Profeta, G. et al. Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study. Phys. Rev. Lett. 96, 047003 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Liu, A. Y. & Cohen, M. L. Electron-phonon coupling in BCC and 9R lithium. Phys. Rev. B 44, 9678–9684 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Richardson, C. F. & Ashcroft, N. W. Effective electron-electron interactions and the theory of superconductivity. Phys. Rev. B 55, 15130–15145 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Thorp, T. L. et al. Search for superconductivity in lithium and magnesium. J. Low Temp. Phys. 3, 589–602 (1970)

    Article  ADS  CAS  Google Scholar 

  16. Lang, K. M. et al. Search for superconductivity in lithium. J. Low Temp. Phys. 114, 445–454 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Juntunen, K. I. & Tuoriniemi, J. T. Nuclear ordering in lithium and an upper limit on its ambient pressure superconducting transition temperature. Phys. Rev. Lett. 93, 157201 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Juntunen, K. I. & Tuoriniemi, J. T. Experiment on nuclear ordering and superconductivity in lithium. J. Low Temp. Phys. 141, 235–293 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Yao, W. et al. A versatile nuclear demagnetization cryostat for ultralow temperature research. J. Low Temp. Phys. 120, 121–150 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Tuoriniemi, J., Juntunen, K. & Uusvuori, J. Thermal contact to lithium metal. Physica B 329, 1294–1295 (2003)

    Article  ADS  Google Scholar 

  21. Overhauser, A. W. Crystal structure of lithium at 4.2 K. Phys. Rev. Lett. 53, 64–65 (1984)

    Article  ADS  CAS  Google Scholar 

  22. Schwarz, W. & Blaschko, O. Polytype structures of lithium at low temperatures. Phys. Rev. Lett. 65, 3144–3147 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Liu, A. Y., Quong, A. A., Freericks, J. K., Nicol, E. J. & Jones, E. C. Structural phase stability and electron-phonon coupling in lithium. Phys. Rev. B 59, 4028–4035 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Buchal, Ch., Pobell, F., Mueller, R. M., Kubota, M. & Owers-Bradley, J. R. Superconductivity of rhodium at ultralow temperatures. Phys. Rev. Lett. 50, 64–67 (1983)

    Article  ADS  CAS  Google Scholar 

  25. Knuuttila, T. A. et al. Polarized nuclei in normal and superconducting rhodium. J. Low Temp. Phys. 123, 65–102 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Buchal, Ch., Mueller, R. M., Pobell, F., Kubota, M. & Folle, H. R. Superconductivity investigations of Au-In alloys and of Au at ultralow temperatures. Solid State Commun. 42, 43–47 (1982)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Inorganic and Analytical Chemistry at TKK for use of the argon glove box. Financial support by the Academy of Finland and the European Commission is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Tuoriniemi.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuoriniemi, J., Juntunen-Nurmilaukas, K., Uusvuori, J. et al. Superconductivity in lithium below 0.4 millikelvin at ambient pressure. Nature 447, 187–189 (2007). https://doi.org/10.1038/nature05820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05820

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing