Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies

A Corrigendum to this article was published on 04 February 2015

Abstract

The development of effective treatment strategies for most forms of acute myeloid leukemia (AML) has languished for the past several decades. There are a number of reasons for this, but key among them is the considerable heterogeneity of this disease and the paucity of molecular markers that can be used to predict clinical outcomes and responsiveness to different therapies. The recent large-scale sequencing of AML genomes is now providing opportunities for patient stratification and personalized approaches to treatment that are based on individual mutational profiles. It is particularly notable that studies by The Cancer Genome Atlas and others have determined that 44% of patients with AML exhibit mutations in genes that regulate methylation of genomic DNA. In particular, frequent mutation has been observed in the genes encoding DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2), as well as Tet oncogene family member 2. This review will summarize the incidence of these mutations, their impact on biochemical functions including epigenetic modification of genomic DNA and their potential usefulness as prognostic indicators. Importantly, the presence of DNMT3A, IDH1 or IDH2 mutations may confer sensitivity to novel therapeutic approaches, including the use of demethylating agents. Therefore, the clinical experience with decitabine and azacitidine in the treatment of patients harboring these mutations will be reviewed. Overall, we propose that understanding the role of these mutations in AML biology will lead to more rational therapeutic approaches targeting molecularly defined subtypes of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  2. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM . Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 2012; 119: 34–43.

    CAS  Google Scholar 

  3. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  4. Gupta V, Tallman MS, Weisdorf DJ . Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood 2011; 117: 2307–2318.

    CAS  Google Scholar 

  5. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994; 331: 896–903.

    CAS  Google Scholar 

  6. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    CAS  Google Scholar 

  7. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    CAS  Google Scholar 

  8. Marcucci G, Haferlach T, Dohner H . Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 2011; 29: 475–486.

    CAS  Google Scholar 

  9. Levis M . FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Prog 2013; 2013: 220–226.

    Google Scholar 

  10. Abdel-Wahab O, Levine RL . Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013; 121: 3563–3572.

    CAS  Google Scholar 

  11. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Google Scholar 

  12. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell 2010; 17: 13–27.

    CAS  Google Scholar 

  13. Schoofs T, Berdel WE, Muller-Tidow C . Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 2013; 28: 1–14.

    Google Scholar 

  14. Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 2012; 8: e1002781.

    CAS  Google Scholar 

  15. Chan SM, Majeti R . Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol 2013; 98: 648–657.

    CAS  Google Scholar 

  16. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    CAS  Google Scholar 

  17. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL et al. Array-based genomic resequencing of human leukemia. Oncogene 2010; 29: 3723–3731.

    CAS  Google Scholar 

  18. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    CAS  Google Scholar 

  19. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23–31.

    CAS  Google Scholar 

  20. Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    CAS  Google Scholar 

  21. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrozek K et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 2012; 30: 742–750.

    Google Scholar 

  22. Hajkova H, Markova J, Haskovec C, Sarova I, Fuchs O, Kostecka A et al. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res 2012; 36: 1128–1133.

    CAS  Google Scholar 

  23. Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 2012; 119: 5824–5831.

    CAS  Google Scholar 

  24. Perugini M, Iarossi DG, Kok CH, Cummings N, Diakiw SM, Brown AL et al. GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations. Leukemia 2013; 27: 1588–1592.

    CAS  Google Scholar 

  25. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell 2010; 18: 553–567.

    CAS  Google Scholar 

  26. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

    CAS  Google Scholar 

  27. Chou WC, Lei WC, Ko BS, Hou HA, Chen CY, Tang JL et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 2011; 25: 246–253.

    CAS  Google Scholar 

  28. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739–744.

    CAS  Google Scholar 

  29. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer cell 2010; 17: 225–234.

    CAS  Google Scholar 

  30. Dang L, Jin S, Su SM . IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 2010; 16: 387–397.

    CAS  Google Scholar 

  31. Rakheja D, Konoplev S, Medeiros LJ, Chen W . IDH mutations in acute myeloid leukemia. Hum Pathol 2012; 43: 1541–1551.

    CAS  Google Scholar 

  32. Pfeifer GP, Kadam S, Jin SG . 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 2013; 6: 10.

    CAS  Google Scholar 

  33. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474–478.

    CAS  Google Scholar 

  34. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Gorlich K et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 2013; 122: 2877–2887.

    CAS  Google Scholar 

  35. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    CAS  Google Scholar 

  36. Shen Y, Zhu YM, Fan X, Shi JY, Wang QR, Yan XJ et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 2011; 118: 5593–5603.

    CAS  Google Scholar 

  37. Fernandez-Mercado M, Yip BH, Pellagatti A, Davies C, Larrayoz MJ, Kondo T et al. Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics. PLoS One 2012; 7: e42334.

    CAS  Google Scholar 

  38. Gaidzik VI, Schlenk RF, Paschka P, Stolzle A, Spath D, Kuendgen A et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 2013; 121: 4769–4777.

    CAS  Google Scholar 

  39. Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 2012; 119: 559–568.

    CAS  Google Scholar 

  40. Hou HA, Lin CC, Chou WC, Liu CY, Chen CY, Tang JL et al. Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia. Leukemia 2013; 28: 50–58.

    Google Scholar 

  41. Markova J, Michkova P, Burckova K, Brezinova J, Michalova K, Dohnalova A et al. Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur J Haematol 2012; 88: 128–135.

    CAS  Google Scholar 

  42. Ostronoff F, Othus M, Ho PA, Kutny M, Geraghty DE, Petersdorf SH et al. Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia 2013; 27: 238–241.

    CAS  Google Scholar 

  43. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    CAS  Google Scholar 

  44. Renneville A, Boissel N, Nibourel O, Berthon C, Helevaut N, Gardin C et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia 2012; 26: 1247–1254.

    CAS  Google Scholar 

  45. Roller A, Grossmann V, Bacher U, Poetzinger F, Weissmann S, Nadarajah N et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 2013; 27: 1573–1578.

    CAS  Google Scholar 

  46. Haferlach T, Bacher U, Alpermann T, Kern W, Kohlmann A, Schnittger S et al. Further Insights Into The Molecular Landscape of De Novo Acute Myeloid Leukemia (AML) Investigating 1291 Patients. 55th ASH Annual Meeting, December 2013 New Orleans, GA, USA, 2013.

    Google Scholar 

  47. Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 2010; 116: 2122–2126.

    CAS  Google Scholar 

  48. Koszarska M, Bors A, Feczko A, Meggyesi N, Batai A, Csomor J et al. Type and location of isocitrate dehydrogenase mutations influence clinical characteristics and disease outcome of acute myeloid leukemia. Leuk Lymphoma 2013; 54: 1028–1035.

    CAS  Google Scholar 

  49. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 2348–2355.

    CAS  Google Scholar 

  50. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010; 28: 3636–3643.

    CAS  Google Scholar 

  51. Ravandi F, Patel K, Luthra R, Faderl S, Konopleva M, Kadia T et al. Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer 2012; 118: 2665–2673.

    CAS  Google Scholar 

  52. Wagner K, Damm F, Gohring G, Gorlich K, Heuser M, Schafer I et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 2010; 28: 2356–2364.

    CAS  Google Scholar 

  53. Caramazza D, Lasho TL, Finke CM, Gangat N, Dingli D, Knudson RA et al. IDH mutations and trisomy 8 in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 2010; 24: 2120–2122.

    CAS  Google Scholar 

  54. Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU . Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol 2012; 5: 5.

    CAS  Google Scholar 

  55. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    CAS  Google Scholar 

  56. Patel KP, Ravandi F, Ma D, Paladugu A, Barkoh BA, Medeiros LJ et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol 2011; 135: 35–45.

    CAS  Google Scholar 

  57. Andersson AK, Miller DW, Lynch JA, Lemoff AS, Cai Z, Pounds SB et al. IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia 2011; 25: 1570–1577.

    CAS  Google Scholar 

  58. Damm F, Thol F, Hollink I, Zimmermann M, Reinhardt K, van den Heuvel-Eibrink MM et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 2011; 25: 1704–1710.

    CAS  Google Scholar 

  59. Westman MK, Pedersen-Bjergaard J, Andersen MT, Andersen MK . IDH1 and IDH2 mutations in therapy-related myelodysplastic syndrome and acute myeloid leukemia are associated with a normal karyotype and with der(1;7)(q10;p10). Leukemia 2013; 27: 957–959.

    CAS  Google Scholar 

  60. DiNardo CD, Propert KJ, Loren AW, Paietta E, Sun Z, Levine RL et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 2013; 121: 4917–4924.

    CAS  Google Scholar 

  61. Fathi AT, Sadrzadeh H, Borger DR, Ballen KK, Amrein PC, Attar EC et al. Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood 2012; 120: 4649–4652.

    CAS  Google Scholar 

  62. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012; 120: 2963–2972.

    CAS  Google Scholar 

  63. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    CAS  Google Scholar 

  64. Lin J, Yao DM, Qian J, Chen Q, Qian W, Li Y et al. Recurrent DNMT3A R882 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One 2011; 6: e26906.

    CAS  Google Scholar 

  65. Brecqueville M, Cervera N, Gelsi-Boyer V, Murati A, Adelaide J, Chaffanet M et al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J 2011; 1: e18.

    CAS  Google Scholar 

  66. Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, Borot F et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J 2011; 1: e9.

    CAS  Google Scholar 

  67. Thol F, Winschel C, Ludeking A, Yun H, Friesen I, Damm F et al. Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica 2011; 96: 1870–1873.

    CAS  Google Scholar 

  68. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    CAS  Google Scholar 

  69. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010; 24: 1094–1096.

    CAS  Google Scholar 

  70. Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia 2012; 26: 101–105.

    CAS  Google Scholar 

  71. Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 2010; 95: 1668–1674.

    CAS  Google Scholar 

  72. Patnaik MM, Lasho TL, Finke CM, Gangat N, Caramazza D, Holtan SG et al. WHO-defined 'myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations. Leukemia 2010; 24: 1283–1289.

    CAS  Google Scholar 

  73. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    CAS  Google Scholar 

  74. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A . DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 2011; 25: 1219–1220.

    CAS  Google Scholar 

  75. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    CAS  Google Scholar 

  76. Stegelmann F, Bullinger L, Schlenk RF, Paschka P, Griesshammer M, Blersch C et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia 2011; 25: 1217–1219.

    CAS  Google Scholar 

  77. Green A, Beer P . Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010; 362: 369–370.

    CAS  Google Scholar 

  78. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A . IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 2010; 24: 1146–1151.

    CAS  Google Scholar 

  79. Tefferi A, Jimma T, Sulai NH, Lasho TL, Finke CM, Knudson RA et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 2012; 26: 475–480.

    CAS  Google Scholar 

  80. Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, Caramazza D et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010; 24: 1302–1309.

    CAS  Google Scholar 

  81. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.

    CAS  Google Scholar 

  82. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 2010; 107: 7473–7478.

    CAS  Google Scholar 

  83. Cashen AF, Schiller GJ, O'Donnell MR, DiPersio JF . Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 556–561.

    CAS  Google Scholar 

  84. Kantarjian HM, Thomas XG, Dmoszynska A, Wierzbowska A, Mazur G, Mayer J et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 2012; 30: 2670–2677.

    CAS  Google Scholar 

  85. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010; 28: 562–569.

    CAS  Google Scholar 

  86. Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood 2012; 120: 2466–2474.

    CAS  Google Scholar 

  87. Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K et al. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 2012; 26: 244–254.

    CAS  Google Scholar 

  88. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411–6418.

    CAS  Google Scholar 

  89. Mims A, Walker AR, Huang X, Sun J, Wang H, Santhanam R et al. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2013; 27: 871–878.

    CAS  Google Scholar 

  90. Dinardo CD, Patel KP, Garcia-Manero G, Luthra R, Pierce S, Borthakur G et al. Lack of association of IDH1, IDH2, and DNMT3A mutations with outcome in older patients with AML treated with hypomethylating agents. Leuk Lymphoma 2014; e-pub ahead of print 4 February 2014.

  91. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 2013; 28: 78–87.

    Google Scholar 

  92. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia 2012; 26: 1106–1107.

    CAS  Google Scholar 

  93. Popovici-Muller J, Shipps GW Jr, Rosner KE, Deng Y, Wang T, Curran PJ et al. Pyrazolo[1,5-a]pyrimidine-based inhibitors of HCV polymerase. Bioorg Med Chem Lett 2009; 19: 6331–6336.

    CAS  Google Scholar 

  94. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    CAS  Google Scholar 

  95. Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C, Huse J et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget 2013; 4: 1729–1736.

    Google Scholar 

  96. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621–1625.

    CAS  Google Scholar 

  97. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    CAS  Google Scholar 

  98. Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV . Inhibition of glutaminase selectively suppresses the growth of primary AML cells with IDH mutations. Exp Hematol 2013; pii: S0301-472X(13)00926-0 doi:10.1016/j.exphem.2013.12.001.

    CAS  Google Scholar 

  99. Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK . Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 2012; 25: 61–73.

    CAS  Google Scholar 

  100. Meeran SM, Ahmed A, Tollefsbol TO . Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 2010; 1: 101–116.

    CAS  Google Scholar 

  101. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Google Scholar 

  102. Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2, and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 2010; 10: 401.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Redner for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Im.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, A., Sehgal, A., Carroll, M. et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 28, 1774–1783 (2014). https://doi.org/10.1038/leu.2014.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.124

This article is cited by

Search

Quick links