Skip to main content
Log in

Comparative physiology of Australian quolls (Dasyurus; Marsupialia)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T b of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C−1) and tiger quolls (0.051°C ºC−1) to substantial in northern quolls (0.100°C ºC−1) and chuditch (0.146°C ºC−1), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O2 g−1 h−1), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H2O g−1 h−1) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (−1.3°C), eastern (−12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMR:

Basal metabolic rate

C dry :

Dry (non-evaporative) thermal conductance

C wet :

Wet (evaporative and non-evaporative) thermal conductance

EHL:

Evaporative heat loss

EO2:

Oxygen extraction

EQ:

Evaporative quotient

EWL:

Evaporative water loss

f R :

Respiratory frequency

MHP:

Metabolic heat production

MWP:

Metabolic water production

MR:

Metabolic rate

PRWE:

Point of relative water economy

RER:

Respiratory exchange ratio

RH:

Relative humidity

RWE:

Relative water economy

SNK:

Student–Newman–Keuls post hoc multiple comparison test

T a :

Ambient temperature

T b :

Body temperature

VCO2:

Carbon dioxide production rate

V I :

Minute volume

VO2:

Oxygen consumption rate

V T :

Tidal volume

References

  • Arnold J (1976) Growth and bioenergetics of the chuditch, Dasyurus geoffroii. Ph.D. thesis, Department of Zoology, University of Western Australia, Perth

  • Bartholomew GA, Hudson JW (1962) Hibernation, estivation, temperature regulation, evaporative water loss, and heart rate of Cercaertus nanus. Physiol Zool 35:94–107

    Google Scholar 

  • Belcher CA, Nelson JL, Darrant JP (2007) Diet of the tiger quoll (Dasyurus maculatus) in south-eastern Australia. Aust J Zool 55:117–122

    Article  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SAR, Vos A, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  PubMed  Google Scholar 

  • Blackhall S (1980) Diet of the eastern native-cat, Dasyurus viverrinus (Shaw), in southern Tasmania. Aust Wildl Res 7:191–197

    Article  Google Scholar 

  • Braithwaite RW, Griffiths AD (1994) Demographic variation and range contraction in the northern quoll, Dasyurus hallucatus (Marsupialia: Dasyuridae). Wildl Res 21:203–217

    Article  Google Scholar 

  • Careau V, Morand-Ferron J, Thomas D (2007) Basal metabolic rate of canids from hot deserts to cold arctic climates. J Mamm 88:394–400

    Article  Google Scholar 

  • Cheverud JM, Dow MM (1985) An autocorrelation analysis of genetic variation due to lineal fission in social groups of Rhesus macaques. Am J Phys Anth 67:113–121

    Article  Google Scholar 

  • Cooper CE, Cruz-Neto AP (2009) Metabolic, hygric and ventilatory physiology of a hypermetabolic marsupial, the honey possum (Tarsipes rostratus). J Comp Physiol B 179:773–781

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Geiser F (2008) The “minimum boundary curve for endothermy” as a predictor of heterothermy in mammals and birds: a review. J Comp Physiol B 178:1–8

    Article  PubMed  Google Scholar 

  • Cooper CE, Withers PC (2002) Metabolic physiology of the numbat (Myrmecobius fasciatus). J Comp Physiol 172:669–675

    CAS  Google Scholar 

  • Cooper CE, Withers PC (2004) Ventilatory physiology of the numbat (Myrmecobius fasciatus). J Comp Physiol B 174:107–111

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Withers PC (2006) Numbats and aardwolves—how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions. J Comp Physiol B 176:623–629

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Withers PC (2008) Allometry of evaporative water loss in marsupials: implications of the effect of ambient relative humidity on the physiology of brushtail possums (Trichosurus vulpecula). J Exp Biol 211:2759–2766

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Withers PC (2009) Effects of measurement duration on the determination of basal metabolic rate and evaporative water loss of small marsupials: How long is long enough? Physiol Biochem Zool 82:438–446

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Geiser F, McAllan B (2005) Effect of torpor on the water economy of an arid-zone dasyurid, the stripe-faced dunnart (Sminthopsis macroura). J Comp Physiol B 175:323–328

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Withers PC, Cruz-Neto AP (2009) Metabolic, ventilatory and hygric physiology of the gracile mouse opossum (Gracilinanus agilis). Physiol Biochem Zool 82:153–162

    Article  CAS  PubMed  Google Scholar 

  • Cooper CE, Withers PC, Cruz-Neto AP (2010) Metabolic, ventilatory and hygric physiology of a South American marsupial, the long-furred woolly mouse opossum. J Mamm (in press)

  • Degabriele R, Dawson TJ (1979) Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol 134:293–301

    Google Scholar 

  • Edgar R, Belcher C (1995) Spotted-tailed quoll. In: Strahan R (ed) The mammals of Australia, 2nd edn. Australian Museum/Reed Books, Sydney, pp 67–69

    Google Scholar 

  • Elgar MA, Harvey PH (1987) Basal metabolic rates in mammals: allometry, phylogeny and ecology. Funct Ecol 1:25–36

    Article  Google Scholar 

  • Geiser F (1994) Hibernation and daily torpor in marsupials: a review. Aust J Zool 42:1–16

    Article  Google Scholar 

  • Geiser F (2003) Thermal biology and energetics of carnivorous marsupials. In: Jones M, Dickman C, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials CSIRO, Melbourne, pp 238–253

  • Geiser F (2004) The role of torpor in the life of Australian arid zone mammals. Aust Mammal 26:125–134

    Google Scholar 

  • Glen AS, Cardoso MJ, Dickman CR, Firestone KB (2009) Who’s your daddy? Paternity testing reveals promiscuity and multiple paternity in the carnivorous marsupial Dasyurus maculatus (Marsupialia: Dasyuridae). Biol J Linn Soc 96:1–7

    Article  Google Scholar 

  • Godsell J (2002) Eastern quoll. In: Strahan R (ed) The mammals of Australia. Reed New Holland, Sydney

    Google Scholar 

  • Harvey PH, Pagel MD, Rees JA (1991) Mammalian metabolism and life histories. Am Nat 137:556–566

    Article  Google Scholar 

  • Hayes JP, Shonkwiler JS (2006) Allometry, antilog transformations, and the perils of prediction on the original scale. Physiol Biochem Zool 79:665–674

    Article  PubMed  Google Scholar 

  • Hayes JP, Shonkwiler JS (2007) Erratum: Allometry, antilog transformations, and the perils of prediction on the original scale. Physiol Biochem Zool 80:556

    Article  Google Scholar 

  • Hayssen V, Lacy C (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A 81:741–754

    Article  CAS  PubMed  Google Scholar 

  • Hinds DS, MacMillen RE (1986) Scaling of evaporative water loss in marsupials. Physiol Zool 59:1–9

    Google Scholar 

  • Hinds DS, Baudinette RV, MacMillen RE, Halpern EA (1993) Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol 182:41–56

    CAS  PubMed  Google Scholar 

  • Hudson JW (1962) The role of water in the biology of the antelope ground squirrel Citellus leucurus. Univ Calif Pub Zool 64:1–56

    Google Scholar 

  • Jones ME, Barmuta LA (1998) Diet overlap and relative abundance of sympatric dasyurid carnivores: a hypothesis of competition. J An Ecol 67:410–421

    Article  Google Scholar 

  • Jones ME, Rose RK (2001) Dasyurus viverrinus. Mamm Species 677:1–9

    Article  Google Scholar 

  • Jones ME, Grigg GC, Beard LA (1997) Body temperatures and activity patterns of Tasmanian devils (Sarcophilus harrisii) and eastern quolls (Dasyurus viverrinus) through a subalpine winter. Physiol Zool 70:53–60

    CAS  PubMed  Google Scholar 

  • Jones ME, Rose RK, Barnett S (2001) Dasyurus maculatus. Mamm Species 676:1–9

    Article  Google Scholar 

  • Koteja P (1996) Measuring energy metabolism with open-flow respirometric systems: Which design to choose? Func Ecol 10:675–677

    Article  Google Scholar 

  • Larcombe AN (2002) Effects of temperature on metabolism, ventilation, and oxygen extraction in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Physiol Biochem Zool 75:405–411

    Article  PubMed  Google Scholar 

  • Larcombe AN (2004) Comparative metabolic, thermoregulatory and ventilatory physiology of bandicoots (Peramelidae). Ph.D. thesis, Zoology, University of Western Australia, Perth

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173:87–112

    CAS  PubMed  Google Scholar 

  • MacMillen RE (1965) Aestivation in the cactus mouse Peromyscus eremicus. Comp Biochem Physiol 16:227–248

    Article  CAS  PubMed  Google Scholar 

  • MacMillen RE (1990) Water economy of granivorous birds: a predictive model. Condor 92:379–392

    Article  Google Scholar 

  • MacMillen RE, Hinds DS (1983) Water regulatory efficiency in heteromyid rodents: a model and its application. Ecology 64:152–164

    Article  Google Scholar 

  • MacMillen RE, Nelson JE (1969) Bioenergetics and body size in dasyurid marsupials. Am J Physiol 217:1246–1251

    CAS  PubMed  Google Scholar 

  • Malan A (1973) Ventilation measured by body plethysmography in hibernating mammals and in poikilotherms. Respir Physiol 17:32–44

    Article  CAS  PubMed  Google Scholar 

  • McNab BK (1966) The metabolism of fossorial rodents: a study of convergence. Ecology 47:712–733

    Article  Google Scholar 

  • McNab BK (1980a) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Article  Google Scholar 

  • McNab BK (1980b) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156

    Google Scholar 

  • McNab BK (1983) Ecological and behavioural consequences of adaptation to various food resources. In Eisenberg JF, Kleiman DG (eds) Advances in the study of mammalian behaviour. Special publication 7 Am Soc Mamm, Kansas, pp 664–697

  • McNab BK (1984) Physiological convergence amongst ant-eating and termite-eating mammals. J Zool (Lond) 203:485–510

    Article  Google Scholar 

  • McNab BK (1986a) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56:1–19

    Article  Google Scholar 

  • McNab BK (1986b) Food habits, energetics, and the reproduction of marsupials. J Zool (Lond) 208:595–614

    Google Scholar 

  • McNab BK (1988) Complications in the scaling basal rate of metabolism in mammals. Q Rev Biol 63:25–54

    Article  CAS  PubMed  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, Ithaca

    Google Scholar 

  • McNab BK (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chilena de Hist Nat 78:183–198

    Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28

    Article  Google Scholar 

  • Menkhorst P, Knight F (2004) A field guide to the mammals of Australia. Oxford University Press, Melbourne

    Google Scholar 

  • Morton SR, Dickman CR, Fletcher TP (1989) Dasyuridae. In: Walton DW, Richardson BJ (eds) Fauna of Australia. Mammalia. Australian Government Publishing Service, Canberra, pp 560–582

    Google Scholar 

  • Muñoz-Garcia A, Williams JB (2005) Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol Biochem Zool 78:1039–1056

    Article  PubMed  Google Scholar 

  • Nicol SC, Maskrey M (1980) Thermoregulation, respiration and sleep in the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae). J Comp Physiol 140: 241–248

  • Nowak RM, Dickman CR (2005) Walker’s Marsupials of the World. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Oakwood M (2002) Spatial and social organization of a carnivorous marsupial Dasyurus hallucatus (Marsupialia: Dasyuridae) J Zool Lond 257:237–248

    Google Scholar 

  • Reardon (1999) Quolls on the run. Aust Geog 54: 89–105

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    CAS  PubMed  Google Scholar 

  • Rounsevell DE, Taylor RJ, Hocking GJ (1991) Distribution records of native terrestrial mammals in Tasmania. Wildl Res 18:699–717

    Article  Google Scholar 

  • Rübsamen K, Hume ID, Foley WJ, Rübsamen U (1984) Implications of the large surface area to body mass ratio on heat balance of the greater glider (Petauroides volans: Marsupialia). J Comp Physiol 154:105–111

    Google Scholar 

  • Schmidt S, Withers PC, Cooper CE (2009) Metabolic, ventilatory and hygric physiology of the chuditch (Dasyurus geoffroii; Marsupialia, Dasyuridae). Comp Physiol Biochem 154:92–97

    Article  CAS  Google Scholar 

  • Serena M, Soderquist T (1989) Spatial organization of a riparian population of the carnivorous marsupial Dasyurus geoffroii. J Zool 219:373–383, 519

    Google Scholar 

  • Serena M, Soderquist T (2008) Western quoll. In: Van Dyck S, Strahan R (eds) The mammals of Australia. Reed New Holland, Sydney, pp 54–56

    Google Scholar 

  • Soderquist T, Serena M (1994) Dietary niche of the western quoll, Dasyurus geoffroii, in the jarrah forest of Western Australia. Aust Mammal 17:133–136

    Google Scholar 

  • Szewczak JM, Powell FL (2003) Open-flow plethysmography with pressure-decay compensation. Resp Physiol Neurobiol 134:57–67

    Article  CAS  Google Scholar 

  • Taggart DA, Shimmin GA, Dickman CR, Breed WG (2003) Reproductive biology of carnivorous marsupials: clues to the likelihood of sperm competition. In: Jones ME, Dickman CR, Archer M (eds) Predators with pouches; the biology of carnivorous marsupials. CSIRO, Collingwood

    Google Scholar 

  • Withers PC (1977) Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Resp Physiol 31:295–307

    Article  CAS  Google Scholar 

  • Withers PC (1992a) Comparative animal physiology. Saunders College Publishing, Philedelphia

  • Withers PC (1992b) Metabolism, water balance and temperature regulation in the golden bandicoot (Isoodon auratus). Aust J Zool 40:523–531

    Article  Google Scholar 

  • Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49:445–461

    Article  Google Scholar 

  • Withers PC, Cooper CE (2008) Dormancy. In: Jørgensen SE, Fath BD (eds) Encyclopaedia of ecology V2. Elsevier, Oxford, pp 952–957

    Chapter  Google Scholar 

  • Withers PC, Cooper CE (2009a) Thermal, metabolic, hygric and ventilatory physiology of the sandhill dunnart (Sminthopsis psammophila Marsupialia. Dasyuridae) Comp Physiol Biochem 153:317–323

    Article  Google Scholar 

  • Withers PC, Cooper CE (2009b) The metabolic and hygric physiology of the little red kaluta. J Mamm 90:752–760

    Article  Google Scholar 

  • Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of the euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693

    Article  Google Scholar 

  • Withers PC, Thompson GG, Seymour RS (2000) Metabolic physiology of the north-western marsupial mole Notoryctes caurinus (Marsupialia: Notoryctidae). Aust J Zool 48:241–258

    Article  Google Scholar 

  • Withers PC, Cooper CE, Buttemer WA (2004) Are day-active small mammals rare and small birds abundant in Australian desert environments because small mammals are inferior thermoregulators? Aust Mamm 26:117–124

    Google Scholar 

  • Withers PC, Cooper CE, Larcombe A (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79:437–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Malcolm and Valerie Douglas, and staff at the Malcolm Douglas Wildlife Park, Broome, Western Australia for allowing us to measure their quolls, and for providing us with accommodation and laboratory space. We also thank Helen Robertson and staff of the Australian section, Perth Zoo, for access to their tiger quolls, and for providing laboratory space. Scott and Graham Thompson kindly caught and donated a northern quoll. This study was funded by an Australian Research Council Discovery grant (DP0665044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Cooper.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, C.E., Withers, P.C. Comparative physiology of Australian quolls (Dasyurus; Marsupialia). J Comp Physiol B 180, 857–868 (2010). https://doi.org/10.1007/s00360-010-0452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0452-3

Keywords

Navigation