Skip to main content

Advertisement

Log in

Therapeutic insulins and their large-scale manufacture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnological innovations over the past 25 years have underpinned the rapid development of a thriving biopharmaceutical sector. Therapeutic insulin remains one of the most commonly used products of pharmaceutical biotechnology and insulin-based products command annual global sales in excess of $4.5 billion. Innovations in its method of production and in particular the advent of engineered insulin analogues provide a fascinating insight into how scientific and technological advances have impacted upon the pharmaceutical biotechnology sector as a whole. Current insulin-based diabetes research is increasingly focused not on the insulin molecule per se, but upon areas such as the development of non-parenteral insulin delivery systems, as well as organ-/cell-based and gene therapy-based approaches to controlling the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c

Similar content being viewed by others

References

  • Aventis (2003) Aventis 2003 annual report. Available at http://www.aventis.com

  • Banting F, Best C (1922) The internal secretions of the pancreas. J Lab Clin Med 7:251–266

    CAS  Google Scholar 

  • Bliss M (1993) The history of insulin. Diabetes Care 16(3):4–7

    Google Scholar 

  • Blundell T, Dodson G, Hodgkin D, Mercola D (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Prot Chem 26:279–402

    CAS  Google Scholar 

  • Brange J, Ribel J, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Norris K, Norris L, Snel L, Sorensen AR, Voigt HO (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333:679–682

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Owens DR, Kang S, Volund A (1990) Monomeric insulins and their experimental and clinical implications. Diabetes Care 13(9):923–954

    CAS  PubMed  Google Scholar 

  • Carino G, Mathiowitz E (1999) Oral insulin delivery. Adv Drug Del Rev 35:249–257

    Article  CAS  Google Scholar 

  • Cefalu WT (2004) Concepts, strategies and feasibility of noninvasive insulin delivery. Diabetes Care 27(1):239–246

    PubMed  Google Scholar 

  • Chance R, Frank B (1993) Research, development production and safety of biosynthetic human insulin. Diabetes Care 16(3):133–142

    Google Scholar 

  • Chance R, Glazer N, Wishner K (1999) Insulin Lispro (Humalog). In: Walsh G, Murphy B (eds) Biopharmaceuticals, an industrial perspective. Kluwer, Dordrecht pp 149–172

  • Ciszak E, Beals M, Frank BH (1995) Role of C-terminal B chain residues in insulin assembly: the structure of hexameric LysB28 ProB29 human insulin. Structure 3:615–622

    Article  CAS  PubMed  Google Scholar 

  • Clement S, Dandona P, Still JG, Kosutic G (2004) Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: results from a phase I/II clinical trial. Metabolism 53(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Efrat S (2004) Generation of insulin producing cells from stem cells for cell replacement therapy of type 1 diabetes. Isr Med Assoc J 6(5):265–267

    CAS  PubMed  Google Scholar 

  • Frank B (1981) The production of human proinsulin and its transformation to human insulin and C peptide. In: Rich D, Gross E (eds) Proceedings of the seventh American peptide symposium on peptidases: synthesis-structure-function. Pierce Chemical, Rockford, USA, pp 729–738

  • Frank B (1991) Manupilation of the position of proline in the B chain produced monomeric insulins. Diabetes 40[Suppl 1]:423A

    Google Scholar 

  • Frank B, Baker J, Bakaysa D (1995) Lys B28 Pro B29 human insulin (insulin lispro): solution properties of a rapid acting insulin. Diabetologia 38[Suppl 1]:A189

    Google Scholar 

  • Galloway JA, Chance RE (1994) Improving insulin therapy: achievements and challenges. Horm Metab Res 26(12):591–598

    CAS  PubMed  Google Scholar 

  • Generex (2004) Oralin product information. Available at http://www.generex.com

  • Ghilzai NM (2003) New developments in insulin delivery. Drug Dev Ind Pharm 29(3):253–265

    Article  CAS  PubMed  Google Scholar 

  • Havelund S, Plum A, Ribel U, Jonassen I, Volund A, Markussen J, Kurtzhals P (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21(8):1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Nosek L, Ronn B, Endhal L, Heinemann L, Kapitza C (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53(6):1614–1620

    CAS  PubMed  Google Scholar 

  • Hinchcliffe M, Illum L (1999) Intranasal insulin delivery and therapy. Adv Drug Del Rev 35:199–234

    Article  CAS  Google Scholar 

  • Homandberg GA, Mattis J, Llaskowski M (1978) Synthesis of peptide bonds by proteinases. Addition of organic solvents shifts peptide bond equilibria towards synthesis. Biochemistry 17:5220–5227

    CAS  PubMed  Google Scholar 

  • Kang S, Owens DR, Vora JP, Brange J (1990) Comparison of insulin analog B9ASPB27GLU and soluble human insulin in insulin-treated diabetics. Lancet 335:303–306

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Creagh F, Peters J, Brange J, Volund A, Owens D (1991) Comparison of subcutaneous soluble human insulin and insulin analogues on meal-related plasma glucose excursions in type-1 diabetic subjects. Diabetes Care 14:571–577

    CAS  PubMed  Google Scholar 

  • Kapitza C, Hompesch M, Scharling B, Heise T, (2004) Intrasubject variability of inhaled insulin in type 1 diabetes: a comparison with subcutaneous insulin. Diabetes Technol Ther 6(4):466–472

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54:277–286

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sorensen A, Kaarsholm N (2002) Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem 277(21):18245–18248

    Article  CAS  PubMed  Google Scholar 

  • Kost J, Langer R (1991) Responsive polymeric delivery systems. Adv Drug Del Rev 6:19–50

    Article  CAS  Google Scholar 

  • Kurtzhals P, Havelund S, Jonassen S, Markussen J (1997) Effect of fatty acids and selected drugs on the albumin binding of a long acting, acylated insulin analogue. J Pharm Sci 86(12):1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, Trub T, (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49(6):999–1005

    CAS  PubMed  Google Scholar 

  • Lee MK, Bae YH (2000) Cell transplantation for endocrine disorders. Adv Drug Del Rev 42:103–120

    Article  CAS  Google Scholar 

  • Levene F, Leibowitz G (1999) Towards gene therapy of diabetes mellitus. Mol Med Today 5:165–171

    Article  PubMed  Google Scholar 

  • Lilly (2003) Lilly 2003 annual report. Available at http://www.lilly.com

  • Markussen J (1980) Process for preparing insulin esters. United Kingdom patent application GB 2069502 A

  • Markussen J, Jorgensen K, Thim L, Damgaard U, Sorensen E, Dodson G, Chawdhury F (1981) Human monocomponent insulin: chemistry and characteristics of human insulin. Diabetologia 21:302

    Google Scholar 

  • Markussen J, Damgaard U, Diers I, Fiil N, Hansen M, Lassen P, Norris F, Norris P, Schou O, Snel L, Thim L, Voigt H (1986) Biosynthesis of human insulin in yeast via single chain precursors. Diabetologia 29:568A–569A

    Google Scholar 

  • Morihara K, Oka T, Tsuzukih H (1979) Semi synthesis of human insulin by trypsin-catalyzed replacement of Ala-B30 by Thr in porcine insulin. Nature 280:412–413

    CAS  PubMed  Google Scholar 

  • Nett PC, Sollinger HW, Alam T (2003) Hepatic insulin gene therapy in insulin-dependent diabetes mellitus. Am J Transplant 3(10):1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Nicol S, Smith M (1960) Amino acid sequence of human insulin. Nature 187:483–485

    CAS  PubMed  Google Scholar 

  • Novo (2003) Novo nordisk 2003 annual report. Available at http://www.novonordisk.com

  • Owens DR, Vora JP, Dolben J (1991) Human insulin and beyond: semisynthesis and recombinant DNA technology reviewed. In: Pickup JC (ed) Biotechnology of insulin therapy. Blackwell, Oxford, pp 24–41

  • Owens DR, Zinman B, Bolli G (2001) Insulins today and beyond. Lancet 358:739–746

    Article  CAS  PubMed  Google Scholar 

  • Owens DR, Zinman B, Bolli G (2003). Alternative routes of insulin delivery. Diabet Med 20(11):886–898

    Article  CAS  PubMed  Google Scholar 

  • Patton J (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Del Rev 19:3–36

    Article  CAS  Google Scholar 

  • Patton J, Bukar J, Nagarajan S (1999) Inhaled insulin. Adv Drug Del Rev 35:235–247

    Article  CAS  Google Scholar 

  • Peck AB, Ramiya V (2004) In vitro generation of surrogate islets from adult stem cells. Transpl Immunol 12(3–4):259–272

    Article  CAS  PubMed  Google Scholar 

  • Pillai O, Panchagnula R (2001) Insulin therapies—past, present and future. Drug Discov Today 20(6):1056–1061

    Article  Google Scholar 

  • Roche E, Sepulcre MP, Ensenat-Waser R, Maestre I, Reig JA, Soria B (2003) Bio-engineering insulin-secreting cells from embryonic stem cells: a review of progress. Med Biol Eng Comput 41(4):384–391

    CAS  PubMed  Google Scholar 

  • Scott D (1934) Crystalline insulin. Biochem J 28(II):1592–1602

    CAS  Google Scholar 

  • Sieber P, Kamber B, Hartmann A, Johl A, Riniker B, Rittel W (1974) Total synthese von human insulin unter gezielter bildung der disulfid bindungen. Helv Chim Acta 57:2617–2621

    CAS  PubMed  Google Scholar 

  • Steil GM, Panteleon AE, Rebrin K (2004) Cloosed-loop insulin delivery—the path to physiological glucose control. Adv Drug Del Rev 56(2):125–144

    Article  CAS  Google Scholar 

  • Sutcliffe J, Duin N (1992) A history of medicine. Barnes and Noble, USA, pp 104–105

  • Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Secretion and processing of insulin precursors in yeast. PNAS 83:6766–6770

    CAS  PubMed  Google Scholar 

  • Vora JP, Owens DR, Dolben J, Atiea TA, Dean JD, Kang S, Burch A, Brange J (1988) Recombinant DNA derived monomeric insulin analogue. Comparison with soluble human insulin in normal subjects. Br Med J 297:1236–1239

    CAS  Google Scholar 

  • Walsh G (1998) Biopharmaceuticals: biochemistry and biotechnology. Wiley, Chichester

  • WHO (2004) Diabetes action report. Available at http://www.who.int

  • Yoon JW, Jun HS (2002) Recent advances in gene therapy for type 1 diabetes. Trends Mol Med 8(2):62–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, G. Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol 67, 151–159 (2005). https://doi.org/10.1007/s00253-004-1809-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1809-x

Keywords

Navigation