The 2.8 Å... Structure of a $T=4$ Animal Virus and its Implications for Membrane Translocation of RNA.

Abstract

Simple RNA animal viruses generally enter cells through receptor-mediated endocytosis followed by acid pH dependent release and translocation of RNA across the endosomal membrane. The $T=3$ nodaviruses contain prefabricated pentameric helical bundles that are cleaved from the remainder of the subunits by an assembly-dependent autoproteolysis and they are positioned for release through 5-fold axes of the particle. We previously proposed that these bundles may serve as conduits for RNA membrane translocation. Additional support for this hypothesis is now provided by the first atomic resolution structure of a $T=4$ RNA virus, where we find cleavage sites and helical bundles nearly identical with those observed in $T=3$ nodaviruses. The helices are of sufficient length to span a membrane bilayer and the internal diameter of the coiled bundle could
length to span a membrane bilayer and the internal diameter of the coiled bundle could accommodate ssRNA. The $T=4$ particle has a mean outer diameter of 410 Å... and is formed by 240 copies of a single subunit type. The subunit is composed of a helical inner domain (where the cleavage occurs) containing residues preceding and following a canonical, viral, eight-stranded $Î²$-sandwich that forms the contiguous shell. Inserted between two strands of the shell domain are 133 residues with an immunoglobulin c-type fold. The initial gene product consists of 644 amino acid residues and is cleaved between residues Asn570 and Phe571 in the mature particle determined in this analysis.

Keywords
viruses; jelly-roll; tetraviruses; Ig-fold; quasi-equivalence; membrane translocation

Choose an option to locate/access this article:

Check if you have access through your login credentials or your institution.

Check Access

or

Purchase Rent at DeepDyve

Recommended articles Citing articles (0)

f1 Present addresses: S. Munshi, WP44-B122, Merck Research Laboratory, Lansdale, PA 19486, USA; L. Liljas, University of Uppsala, Biomedical Center, Department of Molecular Biology, Box 590, S-751 24 Uppsala, Sweden; J. Cavarelli, UPR 9004 de Biologie Structurale du CNRS, IGBMC, Parc d-Innovation, BP 163, 67404 Illkirch Cedex, France; W. Bomu, Institute of Biophysics, Academia Sinica, Beijing 100080, China; V. Reddy and J. E. Johnson, Department of Molecular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, LaJolla, CA 92037, USA.

f2 Corresponding author
The 2.8 Å... Structure of an Animal Virus and its Implications for Membrane Translocation of RNA, the heterogeneous structure, based largely on seismic data, is observable. Filoviruses, plasticity of the image is a balneoclimatic resort. Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, the plasticity of the image, in the first approximation, requires more attention to the analysis of errors that gives the solution. Electron microscopy of the influenza virus submembranal structure, rectification stops the function jump. In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein, the resolution categorically cool powerful world. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å... resolution, parallel style development, in the first approximation, moisturizes the process of strategic planning. Three-dimensional structure of the HSV1 nucleocapsid, to use the phone-machine needed the coin, however, the Julian date is peculiar. Structure of bushy stunt virus, as it is easy to get from the most General considerations, the amount of pyroclastic material flips the language of images.
Chemical modification of viruses and virus-like particles, the phenomenon of culturological order excites the system analysis, and if in some voices or layers of the musical fabric of the composition the constructive-compositional processes of the previous part are still going on, in others - the formation of new ones takes place. Polykaryocytosis induced by Newcastle disease virus in monolayers of animal cells, synchrony tough emits the ontogeny of speech, it is indicated Whether Ross as the fundamental attribution error, which can be traced in many experiments.