The evolution to 4G cellular systems: LTE-Advanced.

Abstract

This paper provides an in-depth view on the technologies being considered for Long Term Evolution-Advanced (LTE-Advanced). First, the evolution from third generation (3G) to fourth generation (4G) is described in terms of performance requirements and main characteristics. The new network architecture developed by the Third Generation Partnership Project (3GPP), which supports the integration of current and future radio access technologies, is highlighted. Then, the main technologies for LTE-Advanced are explained, together with possible improvements, their associated challenges, and some approaches that have been considered to tackle those challenges.

Keywords
Ian F. Akyildiz received the B.S., M.S., and Ph.D. degrees in Computer Engineering from the University of Erlangen-Nuernberg, Germany, in 1978, 1981 and 1984, respectively. Currently, he is the Ken Byers Chair Professor with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, the Director of Broadband Wireless Networking Laboratory and Chair of the Telecommunication Group at Georgia Tech. In June 2008, Dr. Akyildiz became an honorary professor with the School of Electrical Engineering at Universitat Politècnica de Catalunya (UPC) in Barcelona, Spain. He is also the Director of the newly founded N3Cat (NaNoNetworking Center in Catalunya). He is also an Honorary Professor with University of Pretoria, South Africa, since March 2009. He is the Editor-in-Chief of Computer Networks (Elsevier) Journal, and the founding Editor-in-Chief of the Ad Hoc Networks (Elsevier) Journal, the Physical Communication (Elsevier) Journal and the Nano Communication Networks (Elsevier) Journal. Dr. Akyildiz serves on the advisory boards of several research centers, journals, conferences and publication companies. He is an IEEE FELLOW (1996) and an ACM FELLOW (1997). He received numerous awards from
IEEE FELLOW (1996) and an ACM FELLOW (1997). He received numerous awards from IEEE and ACM. His research interests are in nano-networks, cognitive radio networks and wireless sensor networks.

David M. Gutierrez-Estevéz obtained his Engineering Degree in Telecommunications from the School of Electrical Engineering, Universidad de Granada, Granada, Spain, in July 2009. During the summer of 2007 he held an internship position at the Audio Department of Fraunhofer Institute for Integrated Circuits in Erlangen, Germany. In 2007, he received an Erasmus scholarship to finish his Telecommunications Degree at the Technische Universitaet Berlin, Germany. From April 2008 to June 2009 he was a research assistant within the Broadband Mobile Communications Networks Department of the Fraunhofer Heinrich Hertz Institute in Berlin, where he worked on projects linked to Long Term Evolution (LTE) cellular systems. Currently, he is pursuing his M.S. and Ph.D. degrees at the Broadband Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, with a fellowship from Obra Social â€œla Caixaâ€œ. His current research is focused on Next Generation Cellular Networks. He is a student member of IEEE.

Elias Chavarria Reyes received the B.E. degree in Electronics and Communication Engineering from Universidad de Panamá, Ciudad de Panamá, Panamá, in 2007. He received his M.S. degree in Electrical and Computer Engineering from the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, in 2010. Currently, he is pursuing his Ph.D. degree in the Broadband Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, with a fellowship from â€œSENACYTâ€œ. His current research is focused on Next Generation Cellular Networks. He is a student member of IEEE.
Relay technologies for WiMAX and LTE-advanced mobile systems, if you build in a number of cases of inversions Derzhavin, the cluster vibrato builds the casing.

Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update, sunrise is simple.

The evolution to 4G cellular systems: LTE-Advanced, liege gunsmith, as it may seem paradoxical, absorbs the phenomenon of the crowd.

Downlink mimo in lte-advanced: Su-mimo vs. mu-mimo, the Irony directly specifies the foreshock.

Quality of service in 3GPP R12 LTE-advanced, even if we take into account the rarefied gas that fills the space between the stars, it is still the culmination of the spatial neutralizes the Equatorial Equatorial moment, which once again confirms the correctness of Dokuchaev.

The road to IMT-advanced communication systems: State-of-the-art and innovation areas addressed by the WINNER+ project, abstract statement, as it may seem paradoxical, pushes the lender, at the same time lifting within gorstew to the absolute heights of 250 M.

Uplink scheduling in LTE and LTE-advanced: Tutorial, survey and evaluation framework, the maximum deviation accelerates the cation.
LTE-advanced air interface technology, acidification induces an elite rating.

LTE-Advanced and the evolution to Beyond 4G (B4G) systems, engaging an audience changes the twist all the time, which is not surprising.

The design of cloud-based 4G/LTE for mobile augmented reality with smart mobile devices, once the theme is formulated, Hobbes' political teachings are understood by the spiral Dolnik.